\#\#9 Sept 2019 Wenk Arids Bases\#\#
The puoblem set is One Firday 13, Sept. I?

$$
\mathrm{H}_{3} \mathrm{C}^{{ }^{1} \mathrm{C}} \mathrm{OH}_{\mathrm{OH}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{C}^{i} \mathrm{C}_{8} \mathrm{O}+\mathrm{H}_{3} \mathrm{O}^{(2}
$$

acid Missocintion constent K_{A}

$$
\begin{aligned}
\hat{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & \cdots \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{\oplus} \\
K_{\omega} & =\frac{\left[\mathrm{OH}^{-1}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{O}^{\circ}\right]}=[\mathrm{OH}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
K_{\omega} & =1 \times 10^{-14}=[\overline{\mathrm{OH}}]\left[\mathrm{H}_{3} \mathrm{O}^{\top}\right] \\
14 & =\mathrm{POH}+\mathrm{PH}]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{c}^{\prime \mathrm{C}} \mathrm{C} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \\
& <\mathrm{H}_{3} \mathrm{C}^{\wedge} \stackrel{\circ}{\mathrm{C}} \mathrm{O}_{0}^{-}+\mathrm{H}_{3} \mathrm{O}^{(\oplus)}
\end{aligned}
$$

tectic aad

$$
K_{x}=1-77 \times 10^{-5}=\frac{\left[A_{c}^{-}\right]\left[\left(t, O^{+}\right]\right.}{\left[H_{A c}\right]}
$$

What is the pit of 100 ml of 0.1 m acetic acid $\left(W_{A}=\left(.77 \times 10^{-5}\right)\right.$;

$$
\text { HAC }+\mathrm{H}_{2} \mathrm{O}<\mathrm{Ac}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
n_{A}=\frac{\left[A_{-}\right]\left[\mathrm{H}_{3} 0^{+}\right]}{[\mathrm{HAC}]}
$$

umount of $A C^{\prime}$ formad $=$ amontof $\mathrm{H}_{3} \mathrm{of}^{f}$

$$
\begin{aligned}
& W_{a}=1.77 \times 10^{-5}=\frac{x}{[x][x]} \\
& \left.x^{2}=1.27 \times 10^{30}-5\right] \\
& x=1.33 \times 10^{-5}=\left[A c^{-}\right]=\left[143^{+}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { PH }=-\log \left[\mathrm{H}_{3} 0^{+7}\right] \\
& P A=-\log \left[1.33 \times 10^{-3}\right] \\
& P H=2.87
\end{aligned}
$$

To Autamine the ka value we have fitiafte the weak aid with base.

A taxation is a deminat procedure where a known volume of acid has a strong base of known conc. showily added to it and the pat is recorded the whole time.

vol. \%lt added

Thirna a fithation, two Cremical ras are oclurring
(l) Eiguilibrium rtw. When nothing is beiny adoled
(2) Aid//base reaction oceurs wher -olt reacts with the acid.

$$
\mathrm{H}_{3} \mathrm{ClOOH}+\mathrm{OH}^{\mathrm{OH}} \rightarrow \mathrm{H}_{-3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

At the phat,

$$
\left[\mathrm{H}_{3} \mathrm{COOOH}\right]=\left[\mathrm{H}_{3} \mathrm{CCOO}^{-}\right]
$$

Things to nemanbu:
i) you one reacting the weak acid with the strong base, so durian the titration there we 2 types of chenicul ross oceuning
Run!
when nothing is being added The acid is in equiforoinm with $\left(\frac{1}{2} 0\right.$

$$
\mathrm{H}_{3} \mathrm{ClOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{CCOO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{(\theta)}
$$

Run て
We add Oft and it reacts with the acid and creates conjugate base molecules.

$$
\mathrm{H}_{3} \mathrm{COOH}+\overline{\mathrm{OH}} \rightarrow \mathrm{H}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

The \& of conjugade base molecules rade is equal to the numbur of
i tootolt ions added (fora $1:(r+u)$
ii) $\#$ of acid molocules vecuited

The volune bas incuened afta OH^{-} addition so you vecompute the moinutives of thit and A.

Example of a fixation problem:
yon hare coomb of 0 . (in acetic acid ($K_{4}=1.77 \times 10^{-5}$) and you wat to titrate i with 0.2 m NaOH
a) What is the pt of the axil solution cotter 10 mL of 0.2 m NnOt . have been added?

$$
\begin{aligned}
& \text { added? } \\
& \text { DEy: } H A_{c}+H_{2} \mathrm{O} \overrightarrow{\mathrm{C}} \mathrm{Ac}^{-}+\mathrm{H}_{3} \mathrm{O}^{\oplus} \\
& \text { Aced base: } \mathrm{HAC}+\mathrm{OH}^{-} \rightarrow \mathrm{Ac}_{c}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

i) \pm of males of att added:

$$
0.01 \mathrm{~L}+\frac{0.2 \text { moles } 01 H^{-}}{L}=2 \times 10^{-3} \text { moles } 04^{-} \text {aided }
$$

ii) We know than the acid base van anode Ct reacts with mole HAC to make Imole Ac^{-}

Done neactiny, so whert happans?
$0.11 \mathrm{HAcc} \times \frac{0.1 \mathrm{moles}}{L}=0.01$ noles HAccstant
0.01 moles $H A C-2 \times 10^{-3}$ mobestact reuced $=8 \times 10^{-3}$ moles HAc reming
2×10^{-3} moles té malle (ankech licgher thai $\sqrt{(-7)^{2}\left(0^{-5}\right)}$).

Volme changed
ii) New Volune $=100 \mathrm{wl}+$ loml $=110 \mathrm{~mL}$

$$
=0.11 \mathrm{~L}
$$

New molwity ot $H A C=\frac{8 \times 10^{3} \text { moss } A A C}{0.11 \mathrm{~L}}=10.072 \mathrm{~m}$

$$
\text { Wew molaingof } A_{c}^{-}=\frac{2 \times 10^{-3} \text { mdestc }}{0.11 \mathrm{~L}}=10.018 \mathrm{~m}
$$

iv, Equilforimen hicks in

$$
\mathrm{HA}_{2}+\mathrm{H}_{2} \mathrm{O}<\mathrm{Ac}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
\alpha_{x}=1.77 \times 10^{-5}=\frac{\left[A_{3} 0^{\circ}\right]\left[A_{c}\right]}{\left.\left[A_{C}\right]\right]}
$$

$$
\left[\mathrm{t}_{3} 0^{+}\right]=7.08 \times 10^{-3} \mathrm{~m}
$$

$$
-\log \left[\operatorname{ts}_{5} 0^{7}\right]=P^{H}=4.15
$$

Remember
i) Therinitial system is a equilibrium So you con easily determine the starting moles of acid and the Pt (ir you hue the Mas;
(i) Calculate the number of wolof OH^{-} added, and wite the balanced acidlbase chemical itu out - moles ot aid reacted mole of acid nemaing

- moles of conjugate base parduced
-iii) Pat the system back into equilibrium
USING THE NEW MOLAR VALUES FOR WEAL X AE IT and CONJUGAtE BASE
sumple.
Calculuder the ptt when the tolloring solutions ure ariad a 100 ml of 0.1 mHClO The $W_{\text {a of }} \mathrm{HClO}$ is 3×10^{-8}
a) OmL of 0.1 m NaOH
b) 75 ml of $\mathrm{O} .(\mathrm{MNaOH}$
c) 100 ml of 0.1 m NaOHt
a)

$$
\begin{aligned}
& 0.1 \mathrm{~m} \\
& \begin{array}{l}
0.1 \mathrm{M} \\
\mathrm{HCLO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{(+)} \text {a- } \mathrm{C}^{\prime} 10^{-}
\end{array} \\
& K_{A}=\frac{(\text { Pnoducts })}{(\text { Recoctent })^{2}}=\frac{\left[11_{3} 0^{+}\right]\left[\left(10^{-}\right]\right.}{[1 H C 10]}=\frac{[x][1 x]}{[0.1 \mathrm{M}]} \\
& \frac{x^{2}}{0.1}=3 \times 10^{-8} \\
& x^{2}=3 \times 10^{-9} \\
& x=5.477 \times 10^{-5}=\left[11_{3} 0^{+}\right]=\left[\left(10^{-}\right]\right. \\
& p H=4.26 \\
& -\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

b, after 45 ml of 0.1 MMnOH hare been udided

$$
\text { Aid/Buse HClO OLt } \rightarrow \mathrm{ClO}^{\theta}+\mathrm{Hz}_{2}
$$

\pm moles of OH added $=0.0751 \times \frac{0.1 \mathrm{muc} 6 \mathrm{OH}}{L}=7-5 \times 10 \mathrm{modes}$ OH^{-}added

$$
\begin{aligned}
& 7.5 \times 10^{-3} \text { moder OK }+\frac{1 \text { mole HC1O }}{\text { lmole OH }}=\begin{array}{c}
7: 5 \times 10^{-3} \text { moles } \mathrm{HClO} \\
\text { heacted }
\end{array} \\
& \frac{0.1 \text { M. } 601+1}{\mu} 10+0.1 \mathrm{~K}=1 \times 10^{-2} \operatorname{volas} \mathrm{HCl} \mathrm{O} \\
& 1 \times 10^{-2} \text { molestCLO }-7.5 \times 10^{-3} \text { modes HCLOreacted }=
\end{aligned}
$$

2.5×10^{-3} moles $A C 1 O$ hemaining
moles ClO^{-}got mude? 7.5×10^{-3} moles $\mathrm{C} 10^{-}$

